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A B S T R A C T

Understanding structural variations in natural systems can help us understand their responses to disturbance and
environmental changes and plan for the mitigation of human-induced impacts. Terrestrial laser scanning (TLS) is
a technological solution to quickly and accurately capture and model vegetation structure. In the Brazilian
Cerrado biome, characterized by highly heterogeneous plant formations and marked seasonality, TLS may help
improve aboveground biomass (AGB) estimates. This study aimed to use single-scan TLS-derived metrics to
predict plot-scale aboveground biomass for three vegetation types with high structural diversity and biomass
content (woodland savanna, forested savanna, and gallery forest). Ten plots were scanned in each vegetation
type, and variables related to point density at different strata and height distribution were extracted from the
point cloud to predict AGB measured in local field inventories. The woodland savanna provided good fit models
with only two metrics (rainy season: proportion of points below 1.37 m and height of the 99th percentile; adj-
R2 = 0.92, RMSE (root mean square error) = 2.67 Mg/ha or 12%; and dry season: height of the 20th and the
99th percentiles; adj-R2 = 0.88, RMSE = 3.32 Mg/ha or 15%). The model for the forested savanna had rela-
tively less explanatory power with one influential predictor (forested savanna: height of the 20th percentile; adj-
R2 = 0.58, RMSE = 6.85 Mg/ha or 21%). For the gallery forest, however, the canopy structure could not be
adequately characterized due to occlusion of laser returns by dense sub-canopy strata. Our study shows the
strong potential of the terrestrial LiDAR technology for estimation of plot-based biomass across diverse savanna
vegetation types, where the sparse tree structure allows for better laser penetration the accurate generation of
height profiles.

1. Introduction

The natural and anthropogenic-driven variations in the structure of
natural systems are a key object of study in Ecology. They shed light not
only in the natural dynamics that take place in these systems, but help
us to understand and plan for the mitigation of human-induced impacts
in a changing world. For example, the monitoring of vegetation struc-
ture in terms of biomass will allow for the estimation of carbon stock
variations and greenhouse gas emissions caused by forest loss and de-
gradation in the context of land use and climate change (Ciais et al.,
2013; Asner et al., 2010; Dixon et al., 1994). Ecosystem processes, as

well as biodiversity patterns, can also be indirectly inferred from the
assessment of vegetation structure, and descriptors of structure and
biomass have often been applied as proxies for a myriad of natural
patterns and processes (Blakey et al., 2017; Froidevaux et al., 2016;
Jenkins, 2015; Vilà et al., 2013; Müller and Brandl, 2009; Noss, 1999,
1990; Tews et al., 2004). For instance, Lohbeck et al. (2015) demon-
strated that biomass increment in areas undergoing secondary succes-
sion after disturbance is the main predictor of recovering ecosystem-
function rates (e.g. primary productivity, litter decomposition). Our
ability to successfully capture stand attributes is therefore crucial for
the reliable and accurate estimation of these shifts in natural
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ecosystems.
Traditionally, aboveground biomass (AGB) of woody vegetation has

been the most frequently assessed compartment since it is easier to
measure (as opposed to belowground) and since other biomass in other
compartments can be derived from AGB through empirically generated
expansion factors (Dixon et al., 1994). Allometric equations have been
widely developed to derive estimates of aboveground biomass from
measured variables, such as stem diameter, tree height, volume, and/or
wood density, with relatively accurate results (e.g. Roitman et al., 2018;
Alvarez et al., 2012; Feldpausch et al., 2011; Chave et al., 2005; 2014;
Oliveira Filho and Scolforo, 2008; Baskerville, 1972). Such inventories
are usually time consuming and cover relatively small areas. Ecological
studies would highly benefit from innovative tools that allow for the
measurement of vegetation structure and biomass in an accurate and
timely manner, which is key for ecosystem management and mon-
itoring at large spatial scales (Avitabile et al., 2016; Baccini et al., 2012;
Saatchi et al., 2011).

More recently developed technologies can provide fast and highly
accurate estimates of vegetation structure, which can be used to esti-
mate biomass. For example, laser scanning, based on light detection and
ranging (LiDAR) technology, allows for the generation of three-di-
mensional models of forest structure that can be subsequently related to
structural attributes of interest (Lefsky et al., 2002; MacLean and
Krabill, 1986; Nilsson, 1996). Three-dimensional models of forests have
been generated by both air or spaceborne (ALS) and terrestrial laser
scanning (TLS). The former can produce accurate models of canopy
profile over large areas (Asner et al., 2012; Drake et al., 2002; Lefsky
et al., 2002, 2005; Nilsson, 1996); and the latter can capture below-
canopy attributes more accurately, such as understory density, stem
diameter and volume, especially in more structurally complex vegeta-
tion (Chasmer et al., 2006; Côté et al., 2011; Dassot et al., 2012; Lovell
et al., 2003). TLS, however, has a limited spatial footprint and some
effort may be required to cover large plots. Its usefulness thus depends
on whether the information gathered is accurate and more time-effi-
cient than that obtained with classic vegetation inventories (Muir et al.,
2018; Newnham et al., 2015).

The benefits of laser scanning for vegetation measurement were first
explored in forestry sciences aimed at timber production, so that stem
density, height and diameter at breast-height were extracted in struc-
turally simple and relatively sparse tree stands (Dassot et al., 2011;
Maclean and Krabill, 1986; Thies et al., 2004). Over the last decade the
number of studies using laser scanning in natural old-growth forests for
ecological investigations has increased dramatically (Levick et al.,
2016; Dassot et al., 2012; Côté et al., 2011), and they have evolved to
cover structurally complex and denser forests, in tropical environments
(Becknell et al., 2018; Leitold et al., 2015; Longo et al., 2016; Meyer
et al., 2018; Palace et al., 2016; Tanago et al., 2018). Scanning in dense
vegetation is logistically challenging, and in some cases, building a
mosaic of the complete plot is unfeasible, since it requires a large and
time-consuming effort of placing the scanner and targets for the sub-
sequent merging of the point clouds (Wilkes et al., 2017; Newnham
et al., 2015). In some cases, working with single point clouds in-
dependently is the only efficiently way to map the structure of a com-
plex natural stand, albeit facing the problem of occlusion by the ve-
getation (Palace et al., 2016). It is thus necessary to test these
techniques and provide guidelines to the efficient application of laser
scanning in different tropical environments, as well as understand the
error associated with integrating different methodologies (e.g. Pereira
et al., 2019).

Savannas are tropical formations that have been relatively little
explored in terms of identifying the potential of TLS to describe vege-
tation structure (Béland et al., 2014, 2011) as well as to estimate
aboveground biomass (Cuni-Sanchez et al., 2016; Odipo et al., 2016)
and monitor structural change (Asner and Levick, 2012; Levick et al.,
2015). Savannas vary widely in their structural and floristic attributes.
Even at local scales, highly different vegetation types co-exist in a

mosaic of formations. This is the case in the South American tropical
savanna, the Cerrado biome in central Brazil, which is predominantly
comprised of a typical savanna formation, while forests are found along
streams or in patches, forming natural gradients of biomass across the
landscape (Ribeiro and Walter, 2008). Currently, the remnant native
vegetation in the Cerrado represents around 50% of the total original
area (Sano et al., 2010; Beuchle et al., 2015; MapBiomas Collection 3 –
www.mapbiomas.org). The Cerrado is the most structurally (and bio-
logically) diverse savanna in the world, and most of the natural vege-
tation conversion is due to agricultural expansion, and tends to occur
where there is dense vegetation and flat relief/corrugated plane (Rocha
et al., 2011). This natural structural complexity entails highly different
structural attributes and biomass stocks in different formations. It is
clear that the application of LiDAR technology for biomass estimation
in such complex savannas will depend on its effectiveness in capturing
and describing these differences, as well as on the generation of good
predictive models of aboveground biomass for each formation based on
the attributes of TLS clouds.

The goal of this study was therefore to explore the potential of the
terrestrial LiDAR technology to (1) capture the structural differences in
three Cerrado vegetation formations that contain the largest stocks of
woody biomass in the biome (woodland savanna, gallery forest, and
forested savanna – cerradão; Brazil, MCTI, 2015) in terms of LiDAR-
derived metrics; (2) generate biomass estimation algorithms based on
estimates obtained from manual plot surveys; and (3) assess the impact
of seasonality on biomass prediction in the highly seasonal woodland
savanna. The single point clouds were our study object, and an addi-
tional methodological objective was to explore how dense should the
scanning be in these different formations (how many TLS scans within a
plot) to generate accurate and precise estimations of aboveground
biomass.

2. Methods

2.1. Study area

Our study took place in three areas where we sampled three dif-
ferent Cerrado formations: 1) the Brasília Botanic Garden, Federal
District, a protected area, where we sampled woodland savanna plots;
2) a ranch owned by the University of Brasilia, the Fazenda Água
Limpa, Federal District, where we sampled the gallery forest plots; 3)
the Fazenda Clementino, municipality of Itapirapuã, Goiás State, a
privately-owned landholding where we sampled the forested savanna
plots (Fig. 1). These three vegetation formations typical of the Brazilian
Cerrado biome were selected for this study, because of their high pro-
portion of woody aboveground biomass as opposed to other more open
and structurally homogenous formations, as well as because of data
availability from past inventories conducted at these areas. They in-
clude: (1) woodland savanna (known as cerrado sensu stricto), which is
the typical savanna formation, comprising 61% of the native vegetation
of the biome, and formed by large grass and herbaceous components as
well as shrubs and trees (Sano et al., 2010); (2) a type of riparian forest,
known as gallery forest, which runs along narrow streams or rivers,
comprised of large and high trees whose canopies can touch over the
streams, a dense understory, and the absence of the herbaceous and
grass strata; and (3) the forested savanna, known as cerradão, which is
also a forest in terms of structure (large and high trees), but includes a
small grass and herbaceous strata, and is very peculiar in terms of
species composition, presenting both species typical from riparian for-
ests and woodland savanna (Ribeiro and Walter, 1998).

All sampled plots are permanent plots, where different research
groups conducted field vegetation inventories, and manually collected
information on diameter, height, and position of the individual trees. In
the woodland savanna plots, the latest inventories were conducted in
2008, in the gallery forests in 2014, and in the forested savanna in
2017. Nonetheless, the time gap between the gallery forest and
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woodland savanna inventories and the TLS scanning, should have little
influence in biomass estimation from the field data, since structural
changes in these formations are known to be very slow, and there is no
record of fire occurring in these areas during this period (Miranda,
2012; Roitman et al., 2016).

The climate in the Cerrado is classified as Köppen Aw (Peel et al.,
2007), highly seasonal, with marked dry (from April to September) and
rainy (from October to March) seasons (Silva et al., 2008). Mean annual
precipitation varies from 1300 to 1600 (Ribeiro and Walter, 2008). The
average annual temperature varies from 18 °C to 27 °C and the average
annual relative humidity varies from 60 to 90% (Silva et al., 2008). The
woodland savanna is semi-deciduous, with many of its trees shedding
most or all of their leaves in the dry season. Deciduousness is less
pronounced or absent in the forested formations.

2.2. Sampling design

The range of the utilized scanner reaches 70 m under optimal
conditions, but vegetation density results in the occlusion of structural
stand elements at far shorter distances than that. We conservatively
observed that the scan was adequately capturing the vegetation struc-
ture within 5 m from the scan position. Therefore, in the woodland and
forested savanna formations, we scanned 20 × 50-m inventory plots,
divided into 10× 10-m subplots each. Gallery forests plots, consisted of
non-contiguous 10 × 20-m plots distributed along ten transects per-
pendicular to the forest strip, also divided into 10× 10-m subplots. The
initial sampling design therefore consisted of ten plots in the woodland
and forested savanna, and four plots per transect in the gallery forest.
This sampling design would have resulted in ten scans per plot in the

woodland and the forested savanna, and eight scans per transect in the
gallery forest. However, issues found subsequently in the field caused
the exclusion of some subplots due to differences between the current
structure in these subplot and the structure at the time of the inventory,
for instance: a recently opened trail across the forested savanna patch
affected a few of the plots, so that eight subplots were lost and could not
be scanned; two subplots were excluded in the woodland savanna due
to the loss of two large trees, which were inventoried but had fallen at
the time of the scanning; and in one of the transects in the gallery forest,
three plots were scanned instead of four, due to the narrowing of the
forest strip at that specific location. Therefore, the final number of scans
consisted of: 92 subplots scanned in the forested savanna (9200 m2), 98
subplots scanned in the woodland savanna (9800 m2), and 78 subplots
in the gallery forest (7800 m2).

Scans were taken using a FARO Laser Focus™ 70 scanner (70-m
range) placed on a tripod at a height of approximately 1.5 m at the
center of each subplot, working at a resolution of 12.3 mm/10 m and
quality of 2x (two sample points sent in the same direction to average
the position of their returns). Each scan took 3:40 min, and produced a
point cloud with 11.1 million points. Each point cloud was normalized
using the lasground and lasheight function in LAStools (rapidLasso,
GmbH). Because point density tends to be higher close to the scanner,
we applied a 2-cm voxel filter to even out the distribution of points in
the cloud, using the lidr package (Roussel and Auty, 2019) in R 3.4.3 (R
Core Team, 2017). Finally, the clouds were cropped to a 5-m radius to
avoid overlap between neighboring subplots, using Fusion v. 4.80
(MacGaughey, 2018). The single point clouds were treated in-
dependently (see examples of the single point clouds in Fig. 2), and
metrics were generated to describe each subplot point cloud, as

Fig. 1. Location of the study areas, and position of the scanned plots/transects, in all sampled formations: (A) forested savanna (cerradão), (B) gallery forest, and (C)
woodland savanna (cerrado sensu stricto). Background land cover map adapted from MapBiomas Collection 3 (MapBiomas, 2017).
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described below.

2.3. Response variable and predictors

The response variable was the total tree aboveground biomass
(AGB) estimated using allometric equations built specifically for the
formations in question. These equations used manually measured
height and diameter at breast height (dbh) in forests, and base diameter
(db), measured at 30 cm above ground level, in the woodland savanna.
The inclusion criterion considered in the inventories was db ≥ 5 cm in
the woodland and forested savannas, and dbh ≥ 10 cm in the gallery
forest.

The allometric equations used for generating AGB (in Mg) were
specific to savanna and the specific forest formations. For the woodland
savanna, the equations used was the one proposed Roitman et al.
(2018), and for the forest formations, the equations used was the ones

proposed by Oliveira Filho and Scolforo (2008) (SM1).
The response variable on our TLS model was the total plot AGB,

which was calculated as the sum of individual tree AGB. These AGB
values, obtained from the allometric models, were considered the re-
ference values on which TLS modeling was based. Predictor variables
included in the modeling were descriptive metrics of height distribution
and point density per stratum, extracted from the point cloud of each
subplot using Fusion v. 3.80 (MacGaughey, 2018). From the metrics
produced by Fusion, we selected three variable groups that were ob-
jectively and intuitively related to vegetation density and height
(Table 1). In order to generate the metric values at the plot level, height
distribution and percentile variables were averaged out, and point
counts per stratum were summed. We therefore highlight that mean
height (Hmean) and the percentile variables cannot be interpreted as
the actual mean height and height percentiles of the vegetation stand,
but rather the average mean height and height percentiles taken from
all subplots (Table 1).

2.4. Analyses

We tested for differences in the TLS derived metrics between for-
mations using a one-factor analysis of variance (ANOVA). Since 16
comparisons had to be performed to test all variables among forma-
tions, we applied a Bonferroni correction to the significance value
considered (α = 0.05/16 = 0.003125). In order to assess the potential
of these TLS descriptors to detect change in structure in the woodland
savanna due to deciduousness, scans taken at the same location in two
occasions (rainy and dry seasons) were compared through a pairwise t
test, also applying a Bonferroni correction to the significance level
considered.

Prior to modeling aboveground biomass, we conducted a manual
selection of the predictors to be included in the models. The predictors
were included in the model if they met the following criteria: they
explained a large part of the data variance, they were not mutually
colinear, and they were linearly related to the response variable. These
criteria were assessed by a principal component analysis (data var-
iance), correlation matrices (colinearity), and by individually plotting
the relationships between the predictors and plot AGB. From this visual
selection, up to three predictors were selected to be included in the
models, due to the low number of samples in each formation (n = 10).

Modeling was then conducted at the plot-scale level, using the ag-
gregated predictors (see Table 1) and the summed plot AGB as a re-
sponse variable. Gaussian-family generalized linear models (GLM) were
built for each formation separately, including all the additive combi-
nations of the three selected predictors. First, polynomial expressions
(second order) were tested against linear regressions in the case of the
apparent non-linear relationships between the predictors and the re-
sponse variable at the selection stage. We thus verified that all linear
relationships between variables presented a better fit, so that modeling
proceeded using linear regressions only. The influential variables were
selected using stepwise likelihood ratio tests (Zuur et al., 2009), by
comparing nested models and dropping the least significant variable
(based on an F test). The final model is thus defined by the variables
whose removal causes a significant decrease in the fit of the model.
Residual random distribution of the final model was assessed by visual
inspection.

Finally, a bootstrapping procedure was conducted in order to ana-
lyze how many subplot scans would be necessary to reach an accurate
and precise estimation of plot AGB, as well as to assess the stability of
coefficients of the final models. We bootstrapped different numbers of
plots (from 3 to 10) with 1000 iterations, and analyzed the resulting
coefficients of the modeled predictors, the adjusted R2, and model er-
rors (root-mean square error, or RMSE). This procedure was performed
considering only the plots which had been entirely scanned (all ten
subplots). The models applied to the iterations were the final models
obtained in the previous analysis. We did not perform this assessment

Fig. 2. Examples of point clouds obtained by scanning the vegetation of three
Cerrado formations with a terrestrial laser scanner (LiDAR): forested savanna at
Fazenda Clementino, Itapirapuã municipality, state of Goiás; woodland savanna
in the rainy and dry seasons, at the Brasília Botanic Garden, Federal District;
and gallery forest, at Fazenda Água Limpa, Brasília, Federal District, Brazil.
Woodland savannas are correspondent spatially, thus depicting the temporal
variation in vegetation structure at the same location.
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for the gallery forest, since we found no suitable model for this for-
mation.

All statistical analyses were conducted in R version 3.4.3 (R Core
Team, 2017), using package MuMIn (Barton, 2018).

3. Results

Basic differences of the manually measured variables between for-
mations highlight that the gallery forest had the highest canopy,
greatest trunk volumes and biomass, even with a lower density of in-
dividuals. The forested savanna was comparable to the woodland sa-
vanna in terms of basal area, and individual density. However, trees
were overall shorter in the woodland savanna, which also presented the
lowest levels of wood volume and biomass (Table 2).

The TLS-derived metrics successfully captured vegetation structural
differences between the studied formations (Figs. 3 and 4). As expected,
the gallery forest’s canopy was visibly much higher than the other
formations’ (Hmax over three times higher in gallery forests than in the
woodland savanna; Figs. 3 and 4), whereas the forested savanna was
slightly taller than the woodland savanna (Hmax 50% higher; Fig. 4).
Percentile-based metrics also clearly separated the forested formations
from the woodland savanna, and detected differences between the
gallery forest (higher) and forested savanna (lower). Point count pro-
portions indicated that the woodland savanna had the greatest density
at heights below 1.37 m (c1.37p). Despite not statistically significant,
point cloud proportions at lower heights (below 1.37 and 5 m) was the
most pronounced difference between seasons in the woodland savanna.
The forested savanna presented the lowest density of points below
1.37 m, possibly because the tree-regeneration stratum in gallery forests
is often very dense. Point count proportion between 5 and 10 m also
differed between the woodland savanna and the forest formations, and,
as expected, only the gallery forest presented any relevant point count
proportion (up to 2.5%) at heights above 10 m (c20p).

The selection procedure used to assess data variance (SM2),

collinearity (SM3-6), and the relationship between predictors and the
response variable (SM7-10) resulted in the selection of three variables
to be included in the modeling of AGB for the forested savanna (P20,
P99, c20p); for the gallery forests and for the woodland savanna in the
rainy and dry seasons (P20, P99, c1.37p).

Predictive biomass estimation models were successfully generated
for the forested and woodland savannas only. No influential variables
were found to predict AGB in the gallery forest, since the best model
was the null model (Table 3). For the forested savanna, the final model
included height of the 20th percentile (P20) (Fig. 4, Table 3), and ex-
plained 58% of AGB variance, with a RMSE of 22% (6.85 Mg/ha). There
was an influence of the height of the 99th percentile (P99) and the
proportion of points below 1.37 m (c1.37p) on AGB for the woodland
savanna in the rainy season (Fig. 4, Table 3), with a high proportion of
explained variance (adj-R2 = 92%) and relatively low residual error
(RMSE = 2.67 Mg/ha or 12%). Interestingly, c1.37p, the only variable
that indicated seasonal differences in the savanna woodland, was not
selected in the models for the woodland savanna in the dry season.
Instead, the final model for the dry season included the height of the
99th percentile (P99) and the height of the 20th percentile (P20), with a
slightly lower proportion of explained variance (adj-R2 = 88%) and
higher residual error (RMSE = 3. 23 Mg/ha or 15%) than in the rainy
season (Fig. 4, Table 3).

Concerning our final study goal, the bootstrapping assessment in-
dicated that the combination of a smaller number of scans would not
result in the same level of accuracy, since the modeling considering all
10 scans produced a higher value of adj-R2 and a smaller RMSE in all
cases (Fig. 5). In fact, for the forested savanna, even considering a
sampling level of nine scans per plot, the adj-R2 values varied greatly
(from 0.38 to 0.76). Interestingly, in the case of the forested savanna,
the bootstrapping analyses produced a model that explained a higher
amount of variance at n = 10 (adj-R2 = 0.76) than our predictive
model selection (adj-R2 = 0.58). This discrepancy may be explained by
the fact that the bootstrapping procedure could only be conducted with

Table 1
Descriptor variables derived from the individual point clouds, and included in the subsequent analyses as potential predictors for
the modeling of aboveground biomass in the three Cerrado formations. All variables were extracted from each individual cloud,
referring to the subplots within the scanned plots, and were aggregated for the overall plots using the appropriate method,
described under the column Meaning.

Variable Class Meaning

Hmax Height distribution Height of highest point in all point clouds
Hmean Height distribution Mean of the mean point height in the point clouds
P10 Height percentile Mean height of the 10th point distribution percentile
P20 Height percentile Mean height of the 20th point distribution percentile
P30 Height percentile Mean height of the 30th point distribution percentile
P40 Height percentile Mean height of the 40th point distribution percentile
P50 Height percentile Mean height of the 50th point distribution percentile
P60 Height percentile Mean height of the 60th point distribution percentile
P70 Height percentile Mean height of the 70th point distribution percentile
P80 Height percentile Mean height of the 80th point distribution percentile
P90 Height percentile Mean height of the 90th point distribution percentile
P99 Height percentile Mean height of the 99th point distribution percentile
c1.37p Point count Total proportion of points below 1.37 m
c5p Point count Total proportion of points between 1.37 and 5 m
c10p Point count Total proportion of points between 5 and 10 m
c20p Point count Total proportion of points between 10 and 20 m

Table 2
Mean (and range) of estimates of the variables obtained from the field inventories of the woody vegetation in each formation, including: basal area (BA, m2/ha),
mean tree height (Hmean, m), maximum tree height (Hmax, m), total woody volume (Volume, m3/ha), total biomass (Biomass, Mg/ha), and total number of
individuals (Nind, #/ha).

Formation BA Hmean Hmax Volume Biomass Nind
Forested savanna 13.0 (6.4–17.7) 5.6 (4.9–6.2) 13.1 (11.2–14.9) 100.2 (52.9–148.1) 38.3 (23.4–61.3) 1559 (640–2570)
Gallery forest 26.9 (14.8–39.4) 12.7 (12.0–13.6) 21.8 (19.0––33.0) 418.2 (211.2–656.9) 149.6 (74.5–237.4) 579.8 (437–787)
Woodland savanna 13.6 (8.6–20.7) 2.8 (2.1–3.5) 8.0 (6.0–10.0) 50.1 (230.0–98.0) 21.7 (10.1–41.8) 1884 (1550–2380)
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complete plots; that is, those plots from which a few subplots could not
be scanned had to be removed from the analysis. All plots, including
those ‘incomplete’ plots were included in the modeling procedure.
When considering all plots, however, a significant drop in the RMSE
could be observed, which is ultimately the goal of predictive modeling
(bootstrap RMSE = 15 Mg/ha, as opposed to predictive model
RMSE = 6.84 Mg/ha).

4. Discussion

4.1. TLS-based AGB estimation

AGB could be estimated with a surprisingly small number of metrics
extracted from the point clouds, at least for two of the three studied
formations. Plot-scale structural attributes of two formations with re-
latively short vegetation (up to 13 m) and open canopies (e.g. the
forested and woodland savannas) could be captured using the TLS.
However, the explanatory power of the models for the shorter vegeta-
tion type, the woodland savanna, was higher. An indicator of structure
at the highest stratum, the height of the 99th percentile for the wood-
land savanna, was selected as a strong predictor of tree biomass in both
seasons. However, an additional variable that contributed to the ex-
planatory power of the models consisted in the metrics related to ve-
getation structure at lower heights (below 1.37 m in the rainy season,
and below 2 m in the dry season). Interestingly, temporal variations in

the vegetation structure for the woodland savanna were observed only
at these strata. This effect is most likely related to changes underwent
by the grass and shrub strata, and not by the woody vegetation, in the
dry season. In the case of the rainy season, this metric was selected as a
negative predictor of tree biomass, and is most likely an indicator of
tree shading causing a sparser grass and shrub strata in areas with
larger and taller trees. In the case of the dry season, the height of the
20th percentile (between 1.5 and 1.8 m) increases with a decrease in
the density of the understory, caused, as suggested, by the same me-
chanism of shading of lower strata by larger trees. Therefore, in the
absence of a dense grass and shrub stratum in the dry season, the effect
of shading as indicator of higher woody biomass presents itself at
slightly higher strata.

In the case of the forested savanna, or cerradão, the only selected
predictor, the height of the 20th percentile, was also positively related
to aboveground biomass, probably due to the same mechanism. In this
case, no metric related to maximum height was selected, and the final
model had a lower explanatory power than the woodland savanna. We
suggest that the dense understory in the forested savanna, as well as the
slightly higher vegetation, prevented the description of the structure of
the highest strata at least as well as in the woodland savanna. The same
appears to have occurred in describing the woody vegetation structure
of the gallery forest, which could not be suitably described by the point-
cloud metrics, so we were unable to generate a predictive model for
AGB. This was probably because riparian forests are generally

Fig. 3. Distribution of each descriptor extracted from the point clouds and aggregated by plot across all sampled formations in the Cerrado. Comparisons between
different formations were conducted using a one-factor analysis of variance (ANOVA), except for the comparison between woodland savanna over the rainy and the
dry seasons, which was conducted with a pairwise t-test. The significance level considered was α= 0.003125, following a Bonferroni correction. TLS-derived metrics
consist of: Hmax = Height of highest point in all point clouds; Hmean = Mean of the mean point height in the point clouds; P10–P99 = Mean height of the
10th–99th point distribution percentile; c1.37p = Total proportion of points below 1.37 m; c5p = Total proportion of points between 1.37 and 5 m; c10p = Total
proportion of points between 5 and 10 m; and c20p = Total proportion of points between 10 and 20 m.
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comprised of relatively tall trees (up to 28 m) and an extremely dense
understory, which prevented the scanner to generate accurate estimates
of canopy structure. The discrepancy between maximum (28 m) and
mean heights (4 m) observed in the gallery forest support this idea. This
asymmetry in distribution indicated that most of laser points were in-
tercepted by the dense understory, and did not reach the canopy fre-
quently enough to generate an accurate representation of canopy
structure.

Airborne LiDAR has already been shown to better delineate forest
canopy structure and estimate tree height than terrestrial scanners,
especially in the case of dense and tall formations (van Leeuwen and
Nieuwenhuis, 2010), and our results corroborate this pattern, at least
for phase-shift scanners such as the one used here. Time-of-flight TLS,
with multi-return capability, may be able to penetrate and characterize
the vegetation better.

4.2. Methodological considerations

Typically, and ideally, several scans are taken across a plot, and the
resulting point clouds are merged to minimize occlusion and form a
complete 3D model of the vegetation structure within the plot. With our
scanner (FARO), the effort to merge and co-register point clouds can be
quite challenging and end up being more time consuming than manual
field surveys, especially in dense vegetation, where visual targets must
be placed across the plot before scanning (Wilkes et al., 2017;
Newnham et al., 2015), which are then used by the FARO software
(Scene, 2017) to merge point clouds. Acquiring scans at single sampling
stations, and averaging the resulting attributes across plots can be an
efficient alternative method (Liang et al., 2016; Yao et al., 2011), but is
obviously subject to the occlusion effect of the foreground objects
within the plot, which will ultimately depend on the stand and un-
derstory density of the target vegetation (Olofsson and Olsson, 2018).
Moreover, we can infer from the bootstrapping results that in order to

Fig. 4. Partial relationships between selected predictors and aboveground biomass in the final models obtained for the forested savanna (Fazenda Clementino,
Itapirapuã municipality, state of Goiás, Brazil), and the woodland savanna in the rainy and dry seasons (Brasília Botanic Garden, Federal District, Brazil). Modeled
biomass values comprise the total estimate for the entire 20 × 50-m plots.

Table 3
Model comparisons according to a likelihood ratio test, conducted for each formation. A full generalized linear model (glm) of aboveground biomass (AGB) against
the previously selected point cloud metrics is compared with a nested version of it, with the removal of the least influential variable in turn (results not shown). The
first model which is significantly worse off after the removal of a variable is considered the final model, presented in bold font along with its significance value at the
level of α = 0.05. The generated predictive equation of AGB (in Mg/ha) for the three formation which resulted in a final model is also presented.

Formation Models compared df F p

Forested savanna AGB ~ P20 + P99 + c20p AGB ~ P20 + c20p 7 0.60 0.468
AGB ~ P20 + c20p AGB ~ P20 8 2.97 0.130
AGB ~ P20 AGB ~ 1 9 10.89 0.011
Final equation: AGB = -171.07 + 89.06*P20

Gallery forest AGB ~ P20 + P99 + c1.37p AGB ~ P20 + P99 7 2.11 0.196
AGB ~ P20 + P99 AGB ~ P99 8 3.25 0.114
AGB ~ P99 AGB ~ 1 9 0.81 0.395

Woodland savanna (rainy season) AGB ~ P20 + P99 + c1.37p AGB ~ P99 + c1.37p 7 1.86 0.221
AGB ~ P99 + c1.37p AGB ~ P99 8 5.75 0.047
Final equation: AGB = 18.78 + 4.78*P99–0.62*c1.37p

Woodland savanna (dry season) AGB ~ P20 + P99 + c1.37p AGB ~ P20 + P99 7 0.11 0.755
AGB ~ P20 + P99 AGB ~ P99 8 14.71 0.006
Final equation: AGB = -71.71 + 3.92*P99 + 39.07*P20
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achieve high levels of accuracy in the predictions of tree AGB, it might
be necessary to place scans in a way that cover the entire plot as densely
as possible to avoid occlusion, and the spacing to achieve this may be
case-specific depending on stand density. This limits the time-efficiency
that can be achieved using TLS for plot-scale measurements. Alter-
natively, advances have recently been made on the use of single scans
to capture and characterize structural attributes in forest stands with
the development of analytical methods that directly deal with the oc-
clusion by foreground elements of the vegetation (Palace et al., 2016;
Astrup et al., 2014; Ducey and Astrup, 2013). These techniques must be
further explored.

The quality and resolution of the point clouds obtained with the
LiDAR technology is outstanding, and still currently surpasses the re-
searchers’ ability to analyze and extract ecological patterns from them.
The use of TLS-based metrics has been shown to be surprisingly useful,
considering the time spent collecting data and the analytical simplicity.
At the chosen resolution, which was satisfactorily for our purposes, an

entire plot was quickly scanned (1.5 h per plot). The past surveys of the
same plots, with the manually measuring of each tree individual, took
approximately 6–7 h. Of course, depending on the goals of the study,
manual inventories still provide a lot more information on stand attri-
butes not accessible to laser scanners, such as species identification and
the marking of individuals for long-term monitoring, and will continue
to be useful.

Also, in the current approach, plot-based point cloud metrics cap-
tures features of interest somewhat indirectly. Future promising steps
would be to individualize and segment trees and their main stems from
the point cloud, to directly derive dbh or db as well as crown height
from the point clouds (Muir et al., 2018; Olofsson and Olsson, 2018).
Another promising analytical method, with the potential to improve
predictive models, would be to build volume models (quantitative
structural models or convex hull). For instance, in QSM, geometric
forms such as cylinders or mesh surfaces are fit to the segmented tree
stems and branches. This results in a geometrically-accurate three-

Fig. 5. Results from the bootstrapping procedure based on 1000 iterations, performed for (A) the forested savanna (Fazenda Clementino, Itapirapuã municipality,
state of Goiás, Brazil), (B) the woodland savanna in the rainy season, and (C) the woodland savanna in the dry season (Brasília Botanic Garden, Federal District,
Brazil), in order to assess the sufficiency of the number of single scans (one scan per subplot) to generate accurate and stable estimates for their respective models
selected in the model ranking step. Model accuracy is represented by the adjusted determination coefficient (adj. R2) and the root mean square error (RMSE). The
estimated coefficients for each variable in the models are also presented.
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dimensional volume fit to each tree (Disney et al., 2018; Menaca et al.,
2017; Hackenberg et al., 2014; Thies et al., 2004). However, these
methods depend on the accurate 3D representation of trees from LiDAR
point clouds. In complex and dense vegetation formations, such as the
woodland savanna, with a dense shrubby understory and a great
number of low irregular multi-stemmed trees, these techniques will be a
challenge of its own. However, if this is successfully achieved, AGB
estimation will surely prove to be a leap forward from manually mea-
sured estimates, or even averaged out LiDAR metrics, which still de-
pend on the calibration using estimates from allometric models
(Newnham et al., 2015). Moreover, allometric models account only for
the biomass of larger trees (dbh ≥ 10 cm in the forest formations and
5 cm in the woodland savanna). Laser scanning captures the whole
stand structure (all trees, shrubs, lianas, herbs, grasses). Therefore,
potential and highly promising developments would involve the iden-
tification and generation of biomass models for all of these compart-
ments.

Nevertheless, when the goal is to derive estimates of biomass over
larger areas, the use of plot-based models has great potential, since it
forms the base for the spatial up-scaling of predictions. Our models in
the case of forested and woodland savannas have been shown to have
comparable accuracies to those obtained with airborne lasers (see re-
view by van Leeuwen and Nieuwenhuis, 2010). Firstly, plot-based
scanning yields accurate estimates partly due to the averaging effect
between individual scans. Secondly, terrestrial scanners give a better
representation of understory structure and less dominant individuals
than airborne sensors (Chasmer et al., 2006). Thus, potentially, the
combination of ground-based and airborne or spaceborne (GEDI, Icesat-
2) LiDAR datasets obtained over the same locations can help refine the
representation of understory and canopy structure in dense formations
with high levels of occlusion, such as in the case of gallery forests.
Moreover, quickly retrievable, plot-based estimates from TLS may form
the basis for the large-scale monitoring of biomass and carbon stocks
over natural areas undergoing loss and degradation. The combination
of datasets from different sources can improve tree biomass mapping by
up-scaling the modeled estimates obtained over a plot to much larger
areas covered by the larger-footprint sensors (Newnham et al., 2015;
Zhao and Popescu, 2009). One caveat would be the need to sample
more plots in order get a more complete representation of the natural
variability of biomass at the original plot-scale, and, ideally, at the final
scale, assessing and improving the generality of such models over a
gradient of environmental conditions (van Leeuwen and Nieuwenhuis,
2010). In our case, this is a necessary next step to improve the pre-
dictive power and make use of the models generated for the Cerrado
formations.

5. Conclusions

This study aimed to highlight the potential of terrestrial LiDAR
technology for the generation of predictive models of plot-scale AGB, as
well as for capturing and describing structural differences between
different formations in Brazil’s tropical savanna. In sparser formations,
with relatively low trees, the ground-based scanner has corroborated
this applicability, by successfully describing vegetation structure at
different strata, and resulting in good predictive models, even with a
low number of sampled plots. Alternately, in the galley forest (com-
prised of a highly dense understory), canopy heights could not be
adequately characterized. In the latter case, most likely a calibration of
models that associate TLS data with airborne sensors will be the solu-
tion, as well as the way to generalize and scale up predictions over
larger areas. The development of such techniques will have a huge
impact in our ability to map and monitor AGB and carbon stocks in the
threatened Cerrado biome. Finally, we conclude that the single scan
approach, with the care to cover the plots as completely as possible, can
be suitable to describe vegetation structure without the need for cloud
co-registration and a complete plot three-dimensional model, also at

least for sparser vegetation types.
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